
GPU computing latency analysis

Ing. Miloš Očkay, PhD
1

1 Department of Informatics

Armed Forces Academy of gen. M. R. Štefánik

Liptovský Mikuláš, Slovakia

milos.ockay@aos.sk

Abstract: Graphics units are no longer just the special purpose computing devices,

but they successfully have conquered the world of parallel acceleration for

the general purpose problems. Application interface has become simple

enough to be accepted and adopted by many programmers. Graphics

Processing Unit (GPU) can provide massive parallel power in small

affordable package with reasonable power consumption characteristics.

New parallel co-processor included even in a desktop size computer or

laptop can provide clustered parallel power and speed up many originally

Central Processing Unit (CPU) based problems. However, CPU problem

has to be adopted carefully with many things in mind. Successful GPU

acceleration relies on problem's data structure, the amount of

communication and many other aspects. This goal usually requires great

deal of optimization. This paper presents a transfer latency analysis in

relation with the complexity of the problem. It also clearly explains how

even embarrassingly parallel problem can fail the GPU acceleration. This

paper also describes modern GPU solutions to the latency communication

bottleneck.

Keywords: CUDA, GPU, Compute unified device architecture, Graphics processing

units, Latency,

1 Introduction

During the last few years GPU has gained tremendous massively parallel

computational power and also very high internal memory bandwidth. However, GPU

is not the standalone system and the bottleneck of this parallel architecture resides in

memory transfers between host and graphics adapter (device) memory. There are new

concepts which try to overcome this problem by hiding the latency of transfer behind

the computation and the concurrency, but all of these are more likely problem

specific, not the general purpose solutions. Problem which can be successfully

accelerated with GPU has to exhibit specific data dependencies and relevant level of

computational intensity. Many conditions and dependencies hidden inside the

algorithm and data structures can affect the adaptation of the problem in the positive

or negative way.

Fig. 1. Computational power and bandwidth of GPU devices [3]

1.1 GPU Transfers

All Compute Unified Device Architecture (CUDA) programs share the same

structural pattern. Memory allocation and memory transfers are essential for the GPU

computation. Basic procedure usually includes host and device memory allocation

and transfers between these two memory spaces. Host to device memory transfer

delivers data for GPU processing. Device to host memory transfer provides host with

partial or final results computed by the GPU kernel. There are basically three

variations of CUDA transfer directives.

// Host memory allocation

 float* host_A = (float*)malloc(size);

 float* host_B = (float*)malloc(size);

// Device memory allocation

 float* device_A;

 cudaMalloc(&device_A, size);

 float* device_B;

 cudaMalloc(&device_B, size);

// Copy vectors from host memory to device memory

 cudaMemcpy(device_A, host_A, size, cudaMemcpyHostToDevice);

// GPU Computation...

// Copy vectors inside the device memory

 cudaMemcpy(device_A, device_B, size, cudaMemcpyDeviceToDevice);

// GPU Computation...

// Copy vectors from device memory to host memory

 cudaMemcpy(host_B, device_B, size, cudaMemcpyDeviceToHost);

Code 1. Memory allocation and transfers [3]

"cudaMemcpy" directive performs transfer between host and device, but also

internal high-speed transfers. Last parameter clearly specifies the direction and the

nature of the transfer. MemcpyHostToDevice and MemcpyDeviceToHost are basic

forward and backward transfer and they are used usually at the beginning of the GPU

program and at the end, the results are computed. Last one, MemcpyDeviceToDevice

is used for relocation in the GPU main memory. First two transfers are limited by the

speed of the PCI-Express Bus. [Tab 1.]

PCIe Architecture Raw Bit Rate Bandwidth Bandwidth for x16

PCIe 1.1 2.5 GT/s 2 GB/s 8 GB/s

PCIe 2.0 5 GT/s 4 GB/s 16 GB/s

PCIe 1.1 8 GT/s 8 GB/s 32 GB/s

Tab 1. PCI-Express speed specification

However, internal GPU bus can handle device to device memory transfer at the

speed up to 317 GB/s. [5]

Fig. 2. Architecture scheme

2 Measuring computation time and time of transfers

CPU timers are quite useless according to the measuring GPU kernel times,

because it is not possible to measure time of GPU program partitions. They can only

provide summary run-time information.

CUDA has its own GPU timers system which allows much precise timing

analysis. Application Interface (API) provides calls that can create and destroy time

stamped events. It is possible to covert time stamp difference to the floating point

value in milliseconds. Resolution is approximately half a microsecond. The timings

Host Device

CPU GPU

PCI Express

Memory Memory

are measured on the GPU clock, so the timing resolution is operating system

independent.

cudaEvent_t start, stop;

float time;

//Start and stop events

cudaEventCreate(&start);

cudaEventCreate(&stop);

//Record the time stamp of start

cudaEventRecord(start,0);

kernel<<<grid,threads>>> ();

//Record the time stamp of stop

cudaEventRecord(stop,0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time,start,stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

Code 2. Kernel time measuring with CUDA events

cudaEvent_t start, stop;

float time;

//Start and stop events

cudaEventCreate(&start);

cudaEventCreate(&stop);

//Record the time stamp of start

cudaEventRecord(start,0);

// Host to Device transfer

 cudaMemcpy(device_A, host_A, size, cudaMemcpyHostToDevice);

kernel<<<grid,threads>>> ();

// Device to Host transfer

 cudaMemcpy(host_B, device_B, size, cudaMemcpyDeviceToHost);

//Record the time stamp of stop

cudaEventRecord(stop,0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time,start,stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

Code 3. Kernel and transfers time measuring with CUDA events

According to this time measuring system, benchmarking serial CPU and

parallel GPU program may process misleading results if the transfers are not included.

CPU reads and writes are performed in global memory of CPU. GPU processing is

not done, until the results are written in global memory of host. It is particularly

important also measure the time of "Device to Host" and "Host to Device" transfers.

The following section is providing correct CPU and GPU comparison process.

We used embarrassingly parallel problem to measure processing time for

GPU and CPU and direct performance comparison. Algorithm is processing long

sequences of high resolution images. It combines two images by color altering

operations (per pixel) and generates the result, which is new image. There is no

dependence among the pixels and all the images are independent. Image pairs are

clearly distinguishable by the name. The dependence of the pair is tied before the

processing and does not require further processing. This dataset structure generates

embarrassingly parallel problem and GPU parallel processing should be very efficient

in this case. Algorithm structure follows generic GPU program structure:

1. Memory allocation

2. CPU run

3. "Host to Device" transfer

4. GPU kernel run

5. "Device to Host" transfer

6. Free memory

We applied two measuring schemes:

I. II.

1. Memory allocation 1. Memory allocation

 -> CPU timer start -> CPU timer start

2. CPU run 2. CPU run

 -> CPU timer stop -> CPU timer stop

 -> GPU timer start

3. "Host to Device" transfer 3. "Host to Device" transfer

 -> GPU timer start

4. GPU kernel run 4. GPU kernel run

 -> GPU timer stop

5. "Device to Host" transfer 5. "Device to Host" transfer

 -> GPU timer stop

6. Free memory 6. Free memory

Kernel runs as many times as many pairs need to be processed. This structure

generates multiple nested loops with CPU processing and it requires intensive

sequential computation. GPU performs this task in parallel fashion and should be

much more efficient.

Fig. 3. Sequential CPU vs. Parallel GPU (P-Pixel)

2.1 Comparing results

Acquired results display parallel GPU advantage concerning only time of

computation. Sequential CPU processing starts to fall behind as the number of images

rises, almost linearly. GPU performs efficiently even for the extensive amount of

processed images. The bigger the size of dataset is, the more pronounced the

difference is between CPU and GPU processing.

Unfortunately, declaring this solution as a successful GPU acceleration is

actually not correct. Considering the time of the "Host to Device" and "Device to

Host" transfers change the outcome dramatically. CPU results will not change

because transfers for the CPU remain the same. Time of GPU transfers will be added

to the processing time and the advantage of GPU processing vanishes.

Fig. 4. CPU and GPU without transfer comparison

Fig. 5. CPU and GPU transfers included [4]

GPU computation is so efficient that it only takes fraction of time. Transfers,

on the other hand are time consuming operations. One of the possibilities is to hide

the transfers behind the computation. In this case there is simply not enough GPU

processing to overlap the transfers. [2] There are two solutions. First, use the smaller

dataset to reduce the transfers or another possibility is to perform more complicated

algorithm which generates more intensive use of GPU computational resources.

Downsizing the data set is not an option because all the images have to be processed

and also CPU version will perform better with the smaller dataset. We modified

algorithm to perform original color alteration multiple times. There is no practical use

of the repetition with the same alteration in this case. We performed it just for the

experimental purpose to see if the latency of transfers can be effectively hidden.

Fig. 6. CPU and GPU repeated alterations

Figure 6 shows that there is the point where the number of performed

alterations actually raises the complexity of the computation to the level where it is

possible to successfully hide the latency of transfers. If transfers remain constant, the

complexity of performed algorithm has direct impact on computation. CPU has to

resolve more complex nested loops which multiply result time significantly. On the

other hand, GPU performs very well. Complexity in this case has minimal impact on

GPU processing time. Main idea is not to speed up GPU computation, but compute

the problem which is complex enough to hide the latency of the transfers and slow

down serial CPU solution to the level that GPU performs better even with included

transfers. This approach requires the problem which is big enough concerning the

dataset and complex enough to employ the GPU on the required level. Dataset does

not have to be gigantic in the terms of amount, but it has to have dependencies which

do not prevent successful parallelization, but raise the complexity of processing.

Fig. 7. Hiding the latency and over performing CPU

tS-Sequential time, tP-Parallel time, tT-Time of transfers [4]

 Complexity parameter can be expressed as a ratio between serial and parallel

execution time. It shows advantage or disadvantage of the parallel solution compared

to the serial one.

K = ts / tp => ts / tp + tT

K - Problem complexity, tS-Sequential time, tP-Parallel time, tT-Time of transfers

The greater the value of K is the more pronounced the advantage of GPU acceleration

is. Values form interval <0,1> indicate that the problem is not suitable for parallel

acceleration. The closer to the zero the value is, the less effective parallel solution is.

All values outside interval <0,1> require further analysis. Parallel execution time has

to be merged with the transfer time tT. [4]

2.1 Other transfer optimization approaches

 Concurrency is the key element of hiding the latency of transfers in the

process of optimization GPU programs. Some recent devices can perform copies

between page locked host and device memory spaces concurrently with the kernel

execution. They can also perform a copy from page-locked host memory to device

memory concurrently with a copy from device memory to page-locked host memory.

Applications manage concurrency through streams.

//Memory copy, two streams

for (int i = 0; i < 2; ++i)

 cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,

 size, cudaMemcpyHostToDevice, stream[i]);

//Kernel launch, two streams

for (int i = 0; i < 2; ++i)

 MyKernel<<<100, 512, 0, stream[i]>>>

 (outputDevPtr + i * size, inputDevPtr + i * size, size);

 for (int i = 0; i < 2; ++i)

 cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,

 size, cudaMemcpyDeviceToHost, stream[i]);

Code 4. Two streams, memory transfer and kernel launch concurrency [3]

 Multi device concurrency assumes that the host is equipped with more than

one device. It is possible to select specific device to execute the kernel. Streams can

be used for concurrent kernel execution.

cudaSetDevice(0); // Set device 0 as current

cudaMalloc(&p0, size); // Memory allocation on device 0

MyKernel<<<1000, 128>>>(p0); // Kernel launch on device 0

cudaSetDevice(1); // Set device 1 as current

cudaMalloc(&p1, size); // Memory allocation on device 1

MyKernel<<<1000, 128>>>(p1); // Kernel launch on device 1

Code 5. Multi device kernels execution [3]

 Peer-to-Peer Memory Copy is model and architecture specific feature and

allows dereferencing pointer to the memory of the other device. This feature is

supported strictly between two devices. It can also be supported by the use of

advanced network interconnection like Infiniband or HyperTransport. Also memory

copy can be performed directly between two devices. [1]

cudaSetDevice(0); // Set device 0 as current

float* p0;

size_t size = 1024 * sizeof(float);

cudaMalloc(&p0, size); // Allocate memory on device 0

cudaSetDevice(1); // Set device 1 as current

float* p1;

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#peer-to-peer-memory-copy

cudaMalloc(&p1, size); // Allocate memory on device 1

cudaSetDevice(0); // Set device 0 as current

MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0

cudaSetDevice(1); // Set device 1 as current

cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1

MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1

Code 6. Peer-to-Peer memory copy [3]

3 Conclusions

Graphics adapters have brought the power of parallel computing to the wide

range of general-purpose programmers. Quickly adoptable application interface also

plays an important role and keeps learning curve fairly steep. CUDA programming

directives can be easily integrated within many current high-level programming

languages. However, there are many design and configuration challenges related to

the problem transformation. Probably the baggiest optimization challenge is

represented by the inter host-device and device-device communication and transfers

during the kernel execution. Transfers' latency can degrade parallel solution, even for

embarrassingly parallel problem, to the level with zero acceleration. It is important to

minimize communication and utilize the complexity of the problem to successfully

outperform CPU solution and achieve reasonable level of GPU acceleration. Parallel

programming, using graphics adapter shows promising outcomes, and surely

represents current trend of raising the computing power for general-purpose problems.

New hardware designs and advanced communication technologies could bring

significant improvements in the field of communication latency reduction.

References

[1] MELLANOX.: MELLANOX Technologies. MELLANOX, 2010, [cit. 2015].

Dostupné na webovskej stránke (world wide web): http://www.mellanox.com/

[2] HARRIS, M.: CUDA Occupancy Calculator, 2007, [cit. 2015]. (world wide web):

http://forums.nvidia.com/index.php?showtopic=31279

[3] NVIDIA.: NVIDIA CUDA: Programming Guide. Nvidia, 2015, [cit. 2015].

(world wide web): http://docs.nvidia.com/cuda/cuda-c-programming-guide

[4] OCKAY, M.: Hardware HPC accelerators. The Technical University of Košice:

Thesis, 2012.

[5] NVIDIA.: NVIDIA Quadro GPUs. Nvidia, 2015, [cit. 2015].

(world wide web): http://www.nvidia.com/object/quadro-desktop-gpus.html

https://www.tuke.sk/tuke/university

