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Abstract: Graphics units are no longer just the special purpose computing devices, 

but they successfully have conquered the world of parallel acceleration for 

the general purpose problems. Application interface has become simple 

enough to be accepted and adopted by many programmers. Graphics 

Processing Unit (GPU) can provide massive parallel power in small 

affordable package with reasonable power consumption characteristics. 

New parallel co-processor included even in a desktop size computer or 

laptop can provide clustered parallel power and speed up many originally 

Central Processing Unit (CPU) based problems. However, CPU problem 

has to be adopted carefully with many things in mind. Successful GPU 

acceleration relies on problem's data structure, the amount of 

communication and many other aspects. This goal usually requires great 

deal of optimization. This paper presents a transfer latency analysis in 

relation with the complexity of the problem. It also clearly explains how 

even embarrassingly parallel problem can fail the GPU acceleration. This 

paper also describes modern GPU solutions to the latency communication 

bottleneck.   
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1   Introduction 

During the last few years GPU has gained tremendous massively parallel 

computational power and also very high internal memory bandwidth. However, GPU 

is not the standalone system and the bottleneck of this parallel architecture resides in 

memory transfers between host and graphics adapter (device) memory. There are new 

concepts which try to overcome this problem by hiding the latency of transfer behind 

the computation and the concurrency, but all of these are more likely problem 

specific, not the general purpose solutions. Problem which can be successfully 

accelerated with GPU has to exhibit specific data dependencies and relevant level of 

computational intensity. Many conditions and dependencies hidden inside the 

algorithm and data structures can affect the adaptation of the problem in the positive 

or negative way. 



 

 
 

Fig. 1. Computational power and bandwidth of GPU devices [3] 

1.1   GPU Transfers 

All Compute Unified Device Architecture (CUDA) programs share the same 

structural pattern. Memory allocation and memory transfers are essential for the GPU 

computation. Basic procedure usually includes host and device memory allocation 

and transfers between these two memory spaces. Host to device memory transfer 

delivers data for GPU processing. Device to host memory transfer provides host with 

partial or final results computed by the GPU kernel. There are basically three 

variations of CUDA transfer directives.   

 
// Host memory allocation 

   float* host_A = (float*)malloc(size); 

   float* host_B = (float*)malloc(size); 

 

// Device memory allocation 

   float* device_A; 

   cudaMalloc(&device_A, size); 

   float* device_B; 

   cudaMalloc(&device_B, size); 

 

// Copy vectors from host memory to device memory 

   cudaMemcpy(device_A, host_A, size, cudaMemcpyHostToDevice); 

 

// GPU Computation... 

 

// Copy vectors inside the device memory 

   cudaMemcpy(device_A, device_B, size, cudaMemcpyDeviceToDevice); 

 

// GPU Computation... 

 

// Copy vectors from device memory to host memory 

   cudaMemcpy(host_B, device_B, size, cudaMemcpyDeviceToHost); 

 

Code 1. Memory allocation and transfers [3] 



"cudaMemcpy" directive performs transfer between host and device, but also 

internal high-speed transfers. Last parameter clearly specifies the direction and the 

nature of the transfer. MemcpyHostToDevice and MemcpyDeviceToHost are basic 

forward and backward transfer and they are used usually at the beginning of the GPU 

program and at the end, the results are computed. Last one, MemcpyDeviceToDevice 

is used for relocation in the GPU main memory. First two transfers are limited by the 

speed of the PCI-Express Bus. [Tab 1.] 

 

PCIe Architecture Raw Bit Rate Bandwidth Bandwidth for x16  

PCIe 1.1 2.5 GT/s 2 GB/s 8 GB/s 

PCIe 2.0 5 GT/s 4 GB/s 16 GB/s 

PCIe 1.1 8 GT/s 8 GB/s 32 GB/s 

Tab 1. PCI-Express speed specification 

 

However, internal GPU bus can handle device to device memory transfer at the 

speed up to 317 GB/s. [5] 

 

 

 

Fig. 2. Architecture scheme 

2   Measuring computation time and time of transfers 

CPU timers are quite useless according to the measuring GPU kernel times, 

because it is not possible to measure time of GPU program partitions. They can only 

provide summary run-time information.  

CUDA has its own GPU timers system which allows much precise timing 

analysis. Application Interface (API) provides calls that can create and destroy time 

stamped events. It is possible to covert time stamp difference to the floating point 

value in milliseconds. Resolution is approximately half a microsecond. The timings 
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are measured on the GPU clock, so the timing resolution is operating system 

independent.  

 
cudaEvent_t start, stop; 

float time; 

 

//Start and stop events 

cudaEventCreate(&start);  

cudaEventCreate(&stop);   

 

//Record the time stamp of start 

cudaEventRecord(start,0); 

kernel<<<grid,threads>>> (); 

 

//Record the time stamp of stop 

cudaEventRecord(stop,0); 

cudaEventSynchronize(stop); 

 

cudaEventElapsedTime(&time,start,stop); 

cudaEventDestroy(start); 

cudaEventDestroy(stop); 

 

Code 2. Kernel time measuring with CUDA events 

 
cudaEvent_t start, stop; 

float time; 

 

//Start and stop events 

cudaEventCreate(&start);  

cudaEventCreate(&stop);   

 

//Record the time stamp of start 

cudaEventRecord(start,0); 

 

// Host to Device transfer 

   cudaMemcpy(device_A, host_A, size, cudaMemcpyHostToDevice); 

 

kernel<<<grid,threads>>> (); 

 

// Device to Host transfer 

   cudaMemcpy(host_B, device_B, size, cudaMemcpyDeviceToHost); 

 

 

//Record the time stamp of stop 

cudaEventRecord(stop,0); 

cudaEventSynchronize(stop); 

 

cudaEventElapsedTime(&time,start,stop); 

cudaEventDestroy(start); 

cudaEventDestroy(stop); 

 

Code 3. Kernel and transfers time measuring with CUDA events 

 



According to this time measuring system, benchmarking serial CPU and 

parallel GPU program may process misleading results if the transfers are not included. 

CPU reads and writes are performed in global memory of CPU. GPU processing is 

not done, until the results are written in global memory of host. It is particularly 

important also measure the time of "Device to Host" and "Host to Device" transfers. 

The following section is providing correct CPU and GPU comparison process. 

We used embarrassingly parallel problem to measure processing time for 

GPU and CPU and direct performance comparison. Algorithm is processing long 

sequences of high resolution images. It combines two images by color altering 

operations (per pixel) and generates the result, which is new image. There is no 

dependence among the pixels and all the images are independent. Image pairs are 

clearly distinguishable by the name. The dependence of the pair is tied before the 

processing and does not require further processing. This dataset structure generates 

embarrassingly parallel problem and GPU parallel processing should be very efficient 

in this case. Algorithm structure follows generic GPU program structure: 

 

1. Memory allocation 

2. CPU run 

3. "Host to Device" transfer 

4. GPU kernel run 

5. "Device to Host" transfer 

6. Free memory 

 

We applied two measuring schemes: 

 

I.      II. 

---------------------------------------------------------------------------------------------------  

1. Memory allocation    1. Memory allocation  

 -> CPU timer start    -> CPU timer start 

2. CPU run     2. CPU run 

 -> CPU timer stop    -> CPU timer stop 

       -> GPU timer start 

3. "Host to Device" transfer   3. "Host to Device" transfer 

 -> GPU timer start     

4. GPU kernel run    4. GPU kernel run 

 -> GPU timer stop     

5. "Device to Host" transfer   5. "Device to Host" transfer 

       -> GPU timer stop 

 

6. Free memory    6. Free memory 

---------------------------------------------------------------------------------------------------  

 

 

Kernel runs as many times as many pairs need to be processed. This structure 

generates multiple nested loops with CPU processing and it requires intensive 

sequential computation. GPU performs this task in parallel fashion and should be 

much more efficient. 



 

 
Fig. 3. Sequential CPU vs. Parallel GPU (P-Pixel) 

2.1   Comparing results  

Acquired results display parallel GPU advantage concerning only time of 

computation. Sequential CPU processing starts to fall behind as the number of images 

rises, almost linearly. GPU performs efficiently even for the extensive amount of 

processed images.  The bigger the size of dataset is, the more pronounced the 

difference is between CPU and GPU processing.  

Unfortunately, declaring this solution as a successful GPU acceleration is 

actually not correct. Considering the time of the "Host to Device" and "Device to 

Host" transfers change the outcome dramatically. CPU results will not change 

because transfers for the CPU remain the same. Time of GPU transfers will be added 

to the processing time and the advantage of GPU processing vanishes.  

 

  
 

Fig. 4. CPU and GPU without transfer comparison 

 

 



 
 

Fig. 5. CPU and GPU transfers included [4] 

 

GPU computation is so efficient that it only takes fraction of time. Transfers, 

on the other hand are time consuming operations. One of the possibilities is to hide 

the transfers behind the computation. In this case there is simply not enough GPU 

processing to overlap the transfers. [2] There are two solutions. First, use the smaller 

dataset to reduce the transfers or another possibility is to perform more complicated 

algorithm which generates more intensive use of GPU computational resources. 

Downsizing the data set is not an option because all the images have to be processed 

and also CPU version will perform better with the smaller dataset. We modified 

algorithm to perform original color alteration multiple times. There is no practical use 

of the repetition with the same alteration in this case. We performed it just for the 

experimental purpose to see if the latency of transfers can be effectively hidden. 

 

 
 

Fig. 6. CPU and GPU repeated alterations  

 

Figure 6 shows that there is the point where the number of performed 

alterations actually raises the complexity of the computation to the level where it is 

possible to successfully hide the latency of transfers. If transfers remain constant, the 

complexity of performed algorithm has direct impact on computation. CPU has to 

resolve more complex nested loops which multiply result time significantly. On the 



other hand, GPU performs very well. Complexity in this case has minimal impact on 

GPU processing time. Main idea is not to speed up GPU computation, but compute 

the problem which is complex enough to hide the latency of the transfers and slow 

down serial CPU solution to the level that GPU performs better even with included 

transfers. This approach requires the problem which is big enough concerning the 

dataset and complex enough to employ the GPU on the required level. Dataset does 

not have to be gigantic in the terms of amount, but it has to have dependencies which 

do not prevent successful parallelization, but raise the complexity of processing. 

 

 

 

 
Fig. 7. Hiding the latency and over performing CPU 

tS-Sequential time, tP-Parallel time, tT-Time of transfers [4] 

 

 

 Complexity parameter can be expressed as a ratio between serial and parallel 

execution time.  It shows advantage or disadvantage of the parallel solution compared 

to the serial one. 

 

K = ts / tp => ts / tp + tT 

 

K - Problem complexity, tS-Sequential time, tP-Parallel time, tT-Time of transfers 

 

The greater the value of K is the more pronounced the advantage of GPU acceleration 

is. Values form interval <0,1> indicate that the problem is not suitable for parallel 

acceleration. The closer to the zero the value is, the less effective parallel solution is. 

All values outside interval <0,1> require further analysis. Parallel execution time has 

to be merged with the transfer time tT. [4]    



2.1   Other transfer optimization approaches  

 Concurrency is the key element of hiding the latency of transfers in the 

process of optimization GPU programs.  Some recent devices can perform copies 

between page locked host and device memory spaces concurrently with the kernel 

execution. They can also perform a copy from page-locked host memory to device 

memory concurrently with a copy from device memory to page-locked host memory. 

Applications manage concurrency through streams. 

 
//Memory copy, two streams 

for (int i = 0; i < 2; ++i) 

    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, 

                    size, cudaMemcpyHostToDevice, stream[i]); 

 

//Kernel launch, two streams 

for (int i = 0; i < 2; ++i) 

    MyKernel<<<100, 512, 0, stream[i]>>> 

          (outputDevPtr + i * size, inputDevPtr + i * size, size); 

    for (int i = 0; i < 2; ++i) 

    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, 

                    size, cudaMemcpyDeviceToHost, stream[i]); 

 

Code 4. Two streams, memory transfer and kernel launch concurrency [3] 

 Multi device concurrency assumes that the host is equipped with more than 

one device. It is possible to select specific device to execute the kernel. Streams can 

be used for concurrent kernel execution. 

cudaSetDevice(0);            // Set device 0 as current 

cudaMalloc(&p0, size);       // Memory allocation on device 0 

MyKernel<<<1000, 128>>>(p0); // Kernel launch on device 0 

cudaSetDevice(1);            // Set device 1 as current 

cudaMalloc(&p1, size);       // Memory allocation on device 1 

MyKernel<<<1000, 128>>>(p1); // Kernel launch on device 1 

 

Code 5. Multi device kernels execution [3] 

 Peer-to-Peer Memory Copy is model and architecture specific feature and 

allows dereferencing pointer to the memory of the other device. This feature is 

supported strictly between two devices. It can also be supported by the use of 

advanced network interconnection like Infiniband or HyperTransport. Also memory 

copy can be performed directly between two devices. [1] 

cudaSetDevice(0);                   // Set device 0 as current 

float* p0; 

size_t size = 1024 * sizeof(float); 

cudaMalloc(&p0, size);              // Allocate memory on device 0 

cudaSetDevice(1);                   // Set device 1 as current 

float* p1; 

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#peer-to-peer-memory-copy


cudaMalloc(&p1, size);              // Allocate memory on device 1 

cudaSetDevice(0);                   // Set device 0 as current 

MyKernel<<<1000, 128>>>(p0);        // Launch kernel on device 0 

cudaSetDevice(1);                   // Set device 1 as current 

cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1 

MyKernel<<<1000, 128>>>(p1);        // Launch kernel on device 1 

 

Code 6. Peer-to-Peer memory copy [3] 

3   Conclusions 

Graphics adapters have brought the power of parallel computing to the wide 

range of general-purpose programmers. Quickly adoptable application interface also 

plays an important role and keeps learning curve fairly steep. CUDA programming 

directives can be easily integrated within many current high-level programming 

languages. However, there are many design and configuration challenges related to 

the problem transformation. Probably the baggiest optimization challenge is 

represented by the inter host-device and device-device communication and transfers 

during the kernel execution. Transfers' latency can degrade parallel solution, even for 

embarrassingly parallel problem, to the level with zero acceleration. It is important to 

minimize communication and utilize the complexity of the problem to successfully 

outperform CPU solution and achieve reasonable level of GPU acceleration. Parallel 

programming, using graphics adapter shows promising outcomes, and surely 

represents current trend of raising the computing power for general-purpose problems. 

New hardware designs and advanced communication technologies could bring 

significant improvements in the field of communication latency reduction.   
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